跳到主要内容

回溯

简介

回溯算法(backtracking algorithm)是一种通过穷举来解决问题的方法,它的核心思想是从一个初始状态出发,暴力搜索所有可能的解决方案,当遇到正确的解则将其记录,直到找到解或者尝试了所有可能的选择都无法找到解为止。

回溯算法通常采用“深度优先搜索”来遍历解空间。

常见问题

全排列问题

在给定一个集合(如一个数组或字符串)的情况下,找出其中元素的所有可能的排列。

  • 无重复元素情况
def backtrack(
state: list[int], choices: list[int], selected: list[bool], res: list[list[int]]
):
"""回溯算法:全排列 I"""
# 当状态长度等于元素数量时,记录解
if len(state) == len(choices):
res.append(list(state))
return
# 遍历所有选择
for i, choice in enumerate(choices):
# 剪枝:不允许重复选择元素
if not selected[i]:
# 尝试:做出选择,更新状态
selected[i] = True
state.append(choice)
# 进行下一轮选择
backtrack(state, choices, selected, res)
# 回退:撤销选择,恢复到之前的状态
selected[i] = False
state.pop()


def permutations_i(nums: list[int]) -> list[list[int]]:
"""全排列 I"""
res = []
backtrack(state=[], choices=nums, selected=[False] * len(nums), res=res)
return res


"""Driver Code"""
if __name__ == "__main__":
nums = [1, 2, 3]

res = permutations_i(nums)

print(f"输入数组 nums = {nums}")
print(f"所有排列 res = {res}")

  • 有重复元素
def backtrack(
state: list[int], choices: list[int], selected: list[bool], res: list[list[int]]
):
"""回溯算法:全排列 II"""
# 当状态长度等于元素数量时,记录解
if len(state) == len(choices):
res.append(list(state))
return
# 遍历所有选择
duplicated = set[int]()
for i, choice in enumerate(choices):
# 剪枝:不允许重复选择元素 且 不允许重复选择相等元素
if not selected[i] and choice not in duplicated:
# 尝试:做出选择,更新状态
duplicated.add(choice) # 记录选择过的元素值
selected[i] = True
state.append(choice)
# 进行下一轮选择
backtrack(state, choices, selected, res)
# 回退:撤销选择,恢复到之前的状态
selected[i] = False
state.pop()


def permutations_ii(nums: list[int]) -> list[list[int]]:
"""全排列 II"""
res = []
backtrack(state=[], choices=nums, selected=[False] * len(nums), res=res)
return res


"""Driver Code"""
if __name__ == "__main__":
nums = [1, 2, 2]

res = permutations_ii(nums)

print(f"输入数组 nums = {nums}")
print(f"所有排列 res = {res}")

子集和问题

给定一个正整数数组 nums 和一个目标正整数 target ,请找出所有可能的组合,使得组合中的元素和等于 target 。每个元素可以被选取多次。

  • 无重复元素
def backtrack(
state: list[int], target: int, choices: list[int], start: int, res: list[list[int]]
):
"""回溯算法:子集和 I"""
# 子集和等于 target 时,记录解
if target == 0:
res.append(list(state))
return
# 遍历所有选择
# 剪枝二:从 start 开始遍历,避免生成重复子集
for i in range(start, len(choices)):
# 剪枝一:若子集和超过 target ,则直接结束循环
# 这是因为数组已排序,后边元素更大,子集和一定超过 target
if target - choices[i] < 0:
break
# 尝试:做出选择,更新 target, start
state.append(choices[i])
# 进行下一轮选择
backtrack(state, target - choices[i], choices, i, res)
# 回退:撤销选择,恢复到之前的状态
state.pop()


def subset_sum_i(nums: list[int], target: int) -> list[list[int]]:
"""求解子集和 I"""
state = [] # 状态(子集)
nums.sort() # 对 nums 进行排序
start = 0 # 遍历起始点
res = [] # 结果列表(子集列表)
backtrack(state, target, nums, start, res)
return res


"""Driver Code"""
if __name__ == "__main__":
nums = [3, 4, 5]
target = 9
res = subset_sum_i(nums, target)

print(f"输入数组 nums = {nums}, target = {target}")
print(f"所有和等于 {target} 的子集 res = {res}")
  • 有重复元素
def backtrack(
state: list[int], target: int, choices: list[int], start: int, res: list[list[int]]
):
"""回溯算法:子集和 II"""
# 子集和等于 target 时,记录解
if target == 0:
res.append(list(state))
return
# 遍历所有选择
# 剪枝二:从 start 开始遍历,避免生成重复子集
# 剪枝三:从 start 开始遍历,避免重复选择同一元素
for i in range(start, len(choices)):
# 剪枝一:若子集和超过 target ,则直接结束循环
# 这是因为数组已排序,后边元素更大,子集和一定超过 target
if target - choices[i] < 0:
break
# 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过
if i > start and choices[i] == choices[i - 1]:
continue
# 尝试:做出选择,更新 target, start
state.append(choices[i])
# 进行下一轮选择
backtrack(state, target - choices[i], choices, i + 1, res)
# 回退:撤销选择,恢复到之前的状态
state.pop()


def subset_sum_ii(nums: list[int], target: int) -> list[list[int]]:
"""求解子集和 II"""
state = [] # 状态(子集)
nums.sort() # 对 nums 进行排序
start = 0 # 遍历起始点
res = [] # 结果列表(子集列表)
backtrack(state, target, nums, start, res)
return res


"""Driver Code"""
if __name__ == "__main__":
nums = [4, 4, 5]
target = 9
res = subset_sum_ii(nums, target)

print(f"输入数组 nums = {nums}, target = {target}")
print(f"所有和等于 {target} 的子集 res = {res}")

N皇后问题

根据国际象棋的规则,皇后可以攻击与同处一行、一列或一条斜线上的棋子。给定 nn 个皇后和一个 n×nn×n 大小的棋盘,寻找使得所有皇后之间无法相互攻击的摆放方案。

def backtrack(
row: int,
n: int,
state: list[list[str]],
res: list[list[list[str]]],
cols: list[bool],
diags1: list[bool],
diags2: list[bool],
):
"""回溯算法:N 皇后"""
# 当放置完所有行时,记录解
if row == n:
res.append([list(row) for row in state])
return
# 遍历所有列
for col in range(n):
# 计算该格子对应的主对角线和次对角线
diag1 = row - col + n - 1
diag2 = row + col
# 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后
if not cols[col] and not diags1[diag1] and not diags2[diag2]:
# 尝试:将皇后放置在该格子
state[row][col] = "Q"
cols[col] = diags1[diag1] = diags2[diag2] = True
# 放置下一行
backtrack(row + 1, n, state, res, cols, diags1, diags2)
# 回退:将该格子恢复为空位
state[row][col] = "#"
cols[col] = diags1[diag1] = diags2[diag2] = False


def n_queens(n: int) -> list[list[list[str]]]:
"""求解 N 皇后"""
# 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位
state = [["#" for _ in range(n)] for _ in range(n)]
cols = [False] * n # 记录列是否有皇后
diags1 = [False] * (2 * n - 1) # 记录主对角线上是否有皇后
diags2 = [False] * (2 * n - 1) # 记录次对角线上是否有皇后
res = []
backtrack(0, n, state, res, cols, diags1, diags2)

return res


"""Driver Code"""
if __name__ == "__main__":
n = 4
res = n_queens(n)

print(f"输入棋盘长宽为 {n}")
print(f"皇后放置方案共有 {len(res)} 种")
for state in res:
print("--------------------")
for row in state:
print(row)